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Abstract

Postbuckling analysis is presented for a simply supported, shear deformable laminated plate with piezoelectric ac-
tuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is
assumed to be a uniform distribution over the plate surface and through the plate thickness and the electric field
is assumed to be the transverse component E; only. The material properties are assumed to be independent of the
temperature and the electric field. The governing equations of a laminated plate are based on Reddy’s higher order
shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate
is taken into account. Two cases of the in-plane boundary conditions are considered. A perturbation technique is
employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the
postbuckling behavior of perfect and imperfect, symmetric cross-ply and antisymmetric angle-ply laminated plates with
fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The
effects played by temperature rise, applied voltage, the character of in-plane boundary conditions, transverse shear
deformation, plate aspect ratio, fiber orientation and stacking sequence as well as initial geometric imperfections are
studied. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the recent advances in material and structural engineering is in the field of smart structures which
incorporates adaptive materials. By taking advantage of the direct and converse piezoelectric effects,
piezoelectric composite structures can combine the traditional performance advantages of composite lami-
nates along with the inherent capability of piezoelectric materials to adapt to their current environment.
Therefore, hybrid laminated structures where a substrate made laminated material is coupled with surface-
bonded or embedded piezoelectric actuator and/or sensor layers are becoming increasingly important.
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Many postbuckling studies of composite laminated plates subjected to mechanical and thermal loading
are available in the literature, see, for example, Noor and Peters (1992, 1994), Noor et al. (1993), Librescu
and Souza (1993), Librescu et al. (1995), Argyris and Tenek (1995), and Shen (1988, 2000c). However,
relatively few have been made on the coupled mechanical, electrical and thermal response of laminated
composite plates containing piezoelectric layers. Tauchert (1992) gave an analytical solution for hybrid
plates based on classical laminated plate theory. Jonnalagadda et al. (1994) employed first-order shear
deformation plate theory to solve the piezothermoelastic response of hybrid plates and gave a Navier-type
solution. Xu et al. (1995) gave the exact, three-dimensional piezothermoelastic solution of simply supported
rectangular hybrid plates. Kapuria et al. (1997) gave a Levy-type solution for hybrid plates with various
boundary conditions. Lee and Saravanos (1997) examined static bending and twisting responses of hybrid
plates in thermal environments. Reddy (1999) gave the Navier solutions and finite element models based on
the classical and shear deformation plate theories for laminated composite plates integrated sensors and/or
actuators and subjected to mechanical, electrical and thermal loads. Ishihara and Noda (2000) studied the
piezoelectric and pyroelectric effects on the linear response of hybrid plates subjected to mechanical,
electrical and thermal loads. However, published literature on the nonlinear response of smart structures is
limited in number. Icardi and Di Sciuva (1996) analyzed cross-ply laminated plates with top and bottom
actuators under transverse distributed loads and large deflection conditions, but their numerical results
were only for a simple case of cylindrical bending. Oh et al. (2000) studied thermal postbuckling behavior of
laminated plates with top and/or bottom actuators subjected to thermal and electric loads. In their analysis
nonlinear finite element equations based on layerwise displacement theory were formulated, but their
numerical results were only for thin plates and all plates were assumed to have perfect initial configurations.
To the best of the author’s knowledge, there is no literature covering postbuckling response of imperfect
shear deformable laminated plates with piezoelectric layers subjected to the combined action of mechanical,
electric and thermal loads. This is the problem studied in the present paper, for the case when all four edges
of the plate are assumed to be simply supported.

In the present study, the temperature field considered is assumed to be a uniform distribution over the
plate surface and through the plate thickness. The electric field is assumed to be the transverse component
E; only. The material properties are assumed to be independent of the temperature and the electric field.
The governing equations of the plate are based on Reddy’s (1999) higher order shear deformation plate
theory (HSDPT) that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is
taken into account but, for simplicity, its form is assumed to be the same as the initial buckling mode of the
plate. Two cases of the in-plane boundary conditions are considered. A perturbation technique is employed
to determine buckling loads and postbuckling equilibrium paths. Extensive numerical results are presented
showing the effects of variation in the load parameters and geometric parameters of the plate on the dif-
ferent response characteristics.

2. Theoretical development

Consider a rectangular plate of length a, width b and constant thickness ¢, which consists of N plies,
simply supported at four edges. The plate is subjected to a compressive edge load P in the X-direction
combined with thermal and electric loads. As usual, the coordinate system has its origin at the corner of the
plate. Let U, V and W be the plate displacements parallel to a right-hand set of axes (X, Y, Z), where X is
longitudinal and Z is perpendicular to the plate. ¥, and ¥, are the mid-plane rotations of the normals
about the Y- and X-axes, respectively. Denoting the initial geometric imperfection by W (X, Y), let W (X, Y)
be the additional deflection and F (X, Y) be the stress function for the stress resultants defined by N, = F,,,
N,=F, and N,, = —F,,, where a comma denotes partial differentiation with respect to the corresponding
coordinates.
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Attention is confined to two cases: (1) symmetric cross-ply laminated plates, and (2) antisymmetric
angle-ply laminated plates with symmetrically fully covered or embedded piezoelectric actuators. Note that,
for case (2) now the plate stiffnesses Dyg, Dy, A1s and 4y do not equal to zero exactly, and the results are
only approximate.

Reddy (1984) developed a simple HSDPT, in which the transverse shear strains are assumed to be
parabolically distributed across the plate thickness and which contains the same dependent unknowns as in
the first order shear deformation theory. From Reddy’s HSDPT and including thermo-piezoelectric effects,
the governing differential equations are

Ly(W) = Lio(P,) — Lis(P,) + Lis(F) — Lis(N*) — Lie(M") = L(W + W', F) (1)
ZZ] (F) + 222(?)5) + ZZS(Wy) - z24(W) — Zzs(ﬁp) = - %Z(W + 2W*7W) (2)
Z31(W) + Z32(¢x) — 233(?},) + Z34(F) — Z35(Np) — 236(§p) = 0 (3)
Lay(W) = Loa(V) + Las(P,) + Laa(F) — Las(N") — Lag(S") = 0 (4)

where linear operators L;( ) and nonlinear operator L( ) are defined as in Appendix A.

It is noted that these plate equations show thermo-piezoelectric coupling as well as the interaction of
stretching and bending.

All four edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges,
two cases will be considered.

Case (1): The edges are simply supported and freely movable in the X- and Y-directions, respectively.

Case (2): All four edges are simply supported. Uniaxial edge loads are acting in the X-direction. The
edges X =0, a are considered freely movable (in the in-plane direction), the remaining two edges being
unloaded and immovable (in the Y-direction).

For both cases the associated boundary conditions could be found in Librescu and Stein (1991) and Shen
and Zhang (1988). In the present paper, they are

X=0,a
W=¥,=0 (5a)
N,=0, M,=P,=0 (5b)
bi
/ «dY +P=0 (5¢)
0
Y=0,b
W=% -0 (5d)
N,=0, M,=P,=0 (5¢)
/ N,dX =0 (movable edges) (5f)
0
¥V =0 (immovable edges) (5g)

where M, and M, are the bending moments and P, and P, are the higher order moments as defined in
Reddy (1984).
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The condition expressing the immovability condition ¥ =0 (on Y = 0, b) is fulfilled on the average
senses as (Librescu et al., 1995; Shen, 2000b)

/ /banYdX 0 (5h)

This condition in conjunction with Eq. (6b) below provides the compressive stresses acting on the edges
Y =0,b.
The average end-shortening relationships are

A, 1 (> [9dU0

i/b/“ 62F+A azf P a_?x+a¢y 8. W
bJo Jo ”aY2 nayz T\ %6 356 )\ By T oy 32 109X oY
NCLANC 4
X oX oXx

//_uu

o°F o°F .4\ /0¥, 0V, 8§ . oW
//{pwﬁ%w @sﬁ%X§+ﬁ>§%ﬁﬁ}
_1(aw\: _awaw
oY oY oY

- (A’;lﬁf +A’[2Nf)}dXdY (6a)

— (4N + 43N } dydx (6b)

where 4, and 4, are plate end-shortening displacements in the X- and Y-directions.
The temperature field is assumed to be a uniform distribution over the plate surface and through the
plate thickness.
For the plate type piezoelectric material, only thickness direction electric field £, is dominant, and it is
assumed that
Vi
E, =" (7)
Tk
where ¥ is the applied voltage across the kth ply and # is the thickness of the ply.
The equivalent thermo-piezoelectric loads are defined as

N’; Ni N‘;
M| =M |+ |7 (8)
5 S 5

The forces, moments and higher order moments caused by elevated temperature or electric field are defined
by

NX M( PX A
- N t x
—T —T =T
N, M, P, |=) /t (1,2,7%)| 4, | ATdZ (9a)
_ _ _ k=1 k—1
N M. P Ay 1y
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(9b)

(10a)

(10b)

where o, and oy, are the thermal expansion coefficients in the longitudinal and transverse directions, ds
and ds, are piezoelectric strain constants of a single ply, and Q,; are the transformed elastic constants,

defined by
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where
En Ex v En
On 1 —vva)’ On = o)’ On TEENE Ous = Go3, Oss = Gi3, Qo = G12
(11c)
Ei, Ex, Gz, Gi3, Gz, vi5 and v,y have their usual meanings, and
c=cosf, s=sinb (11d)

where 6 is the lamination angle with respect to the plate X-axis.

3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Egs. (1)-(4) with boundary conditions (5a)—(5h).
Before proceeding, it is convenient first to define the following dimensionless quantities (with y,; in Eq. (18)
below are defined as in Shen (2000a,b))

x=1X/a, y=nY/b, f=alb, (W, W)= W, W)/[D;Dipd; 45]"*,

End * x 11/2 w * * * x 11/4
F =F/[D},D3,] / » (Yo W) = (P, ¥))a/n[Dy, D547, 45)] / )

* x« 11/2 * « 11/2 * *
Y4 = [Dzz/Du] y Yu = [Au/Azz] s Vs = —Al /A5,
(31, 7a1) = (& /%) [Ass — 8Dss /f* + 16Fss/1*, Ay — 8Dy /1> + 16Fu/1*] /D;, (12)

(M, My, P, P,) = (M, M,, 4P, /37 4P, /37)a* /° D5, [D; DAy A5, .
(V115 V12, VP15 V2) = (Af,Af,Bﬁ,Bf)az/nz [DnDzz] / )

\ « L 11/2 < * v g% 1172
Ju = Pb/AT* [D} D3] 7, (8:,0,) = (Ai/a, 4,/b)b [An? [ Dy DA Ay

Also let
e Voo TA]
CIAT = — AT dz (13a)
AT A
L7y ] k=1 Y- [y |,
87 8]
. AV:—Z/ Yz (13b)
_By i i1 Juor | By k U

The nonlinear Egs. (1)-(4) may then be written in dimensionless form as

Liy(W) = Lip(P,) — Lis(P,) + yialia(F) = yuB°LOW + W*, F) (14)
Lot (F) + 724L02 (V) + 92alos (V) — Voaloa(W) = _%"/24ﬂ2L(W + 2w, W) (15)
Lat(W) + Lp(Vy) — L3s(V)) + 714laa(F) = 0 (16)

Lay(W) = Loo(¥s) + Laz (V) + 714Laa(F) =0 (17)



H.-S. Shen | International Journal of Solids and Structures 38 (2001) 7703-7721

where
64 64 4
Liu( )= Mo g + zylzzﬁzaxz—ayz =+ “/11454@

o* o
Lip( ) = N12033 3+V112ﬂ ™0y

63
Liy( )= V131ﬁm+ "/13353_3

ot ot
Lus( ):V141ﬂax3a /143ﬂ oxdy AA3
ot o 64
Lo( )= 6x4+2y212ﬁ oy 2+/214ﬁ
3 3

Ln( )= VZZlﬁW +7mh e

& , @
Ly( ) = 7’230@ + 72308 W

o* , o
Ly( ) = Vz4lﬁm+ 72438 o7

0 o? o?
Ly ( )—/316 ‘|‘V%1063 Vslzﬁa A
0? 62
Ln( ) =731 — V3023 ) V322ﬁ2
62
Ly( ) = —
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Ly () = Lo )

o l
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62 62
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L( )=
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The boundary conditions expressed by Egs. (5a)—(5h) become
x=0, m
W=¥,=0

Faxy:Mv:Px:O

7709

(19a)
(19b)
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[ rS LTy (19¢)
y=0, m

W= =0 (19d)

Fo=M,=P,=0 (19)

i ZZTI; dx = 0 (movable edges) (19f)

0, = 0 (immovable edges) (19¢g)

and the unit end-shortening relationships become:

5 — 1 T LOF  O°F oy, oY, o'W
x = —m A 245 3y 23 " Vsas ) + 72403 B oy o /24/516ﬂa oy

1 ow\’ ow ow*
5V (6x> R + (V34¥r1 — ¥57r2) AT + (¥347p1 — Vs“/Pz)AV} dxdy (20a)
O°F 62F oy, oY, o*w
- - SLET )
dy 4112/3 - / / {[axz B3 + V247230 (ﬁ o + o ) /243’526ﬂa 3 }
1 ow ow ow*
23’243 ( o ) - V24ﬁ2§ oy + (172 = v5771)AT + (72 — VSVH)AV} dydx (20b)

By virtue of the fact that AV and AT are assumed to be uniform, the thermo-piezoelectric coupling in
Egs. (1)—(4) vanishes, but terms in AV and AT intervene in Egs. (20a) and (20b).

Applying Egs. (14)—(20b), the compressive postbuckling behavior of perfect and imperfect, shear de-
formable laminated plates with piezoelectric actuators under complex loading conditions is now determined
by a perturbation technique. The essence of this procedure, in the present case, is to assume that

W(x,y, ¢ Zsfw,xy F(x,y,¢ Zsfjxy

(1)
(%, p,e Zsfl/a] (x,3), Py(x,p,e ZS’%, (x,)
where ¢ is a small perturbation parameter and the first term of w;(x, y) is assumed to have the form
wi(x,y) = A(lll) sin mx sin ny (22)
and the initial geometric imperfection is assumed to have a similar form
W*(x,y,¢) = ea’, sin mxsinny = eud\}) sin mxsin ny (23)

where 1 = aj, /A§‘1> is the imperfection parameter.

Substituting Eq. (21) into Egs. (14)—(17) and collecting the terms of the same order of ¢, a set of per-
turbation equations is obtained. By using Egs. (22) and (23) to solve these perturbation equations of each
order, the amplitudes of the terms w(x,y), f;(x,¥), ¥,,(x,y) and ¥, (x,y) are determined step by step. As a
result, up to fourth-order asymptotic solutions can be obtained:
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_ (1) : 3 403) o : (3) :
W =¢|A}| sinmxsinny| + & |43 sinmx sin 3ny + A5, sin 3mx sin ny

+e [Azz sin 2mx sin 2ny + A% sin 2mx sin 4ny 4 4'3) sin 4mx sin 2ny} +0(&%) (24)

Y 0%
00 2 00 2

+& { 13 cos mx cos 3ny + B31 cos 3mx cos ny} +é { Bf;(‘) y; - bf)o 5 —|— 820 cos 2mx
+ 302 cos 2ny + 322 cos 2mx cos 2ny + B40 cos 4mx + BO4 cos4ny + B24 cos 2mx cos 4ny

2
F=-B0Y —p0%

5~ bw 5 +€{ i cosmxcosny} —&-82{—

—|— 320 cos 2mx + 302 cos 2ny}

+ BY) cos 4mx cos 2ny] +0(&’) (25)

Y. =¢ {Cﬁl) cos mx sin ny} + & {Coz sin 2ny} +¢ [CB) cos mx sin 3ny + C3, cos 3mx sin ny}

+ ¢ [C((é) sin 2ny + Céj) sind4ny + C5) cos 2mxsin 2ny + C5}) cos 2mx sin 4ny

+ C cos 4mx sin 2ny} +0(&) (26)

P, =¢ [Dgll) sin mx cos ny} +e [D20 sin 2mx} + & [D(l? sin mx cos 3ny + D(331) sin 3mx cos ny
+¢ [Dzo sin 2mx + D40 sin4mx + D22 sin 2mx cos 2ny + D24 sin 2mx cos 4ny

+ D) sin 4mx cos 2ny} +0(&%) (27)

It is mentioned that all coefficients in Eqs. (24)—(27) are related and can be written as functions of A(lll)
but, for the sake of brevity, the detailed expressions are not shown.

Next, substituting Eqgs. (24)—(27) into the boundary conditions (19¢) and (20a), the postbuckling equi-
librium path can be written as

2o =20 1P L W (28)
and
8, =00 4+ P2+ sWwt ... (29)

in which 7, is the dimensionless form of maximum deflection, which is assumed to be at the point (x,y) =
(n/2m,n/2n) and . and 6\ (i = 0,2,4,...) are given in detail in Appendix B.

Eqgs. (28) and (29) can be employed to obtain numerical results for the postbuckling load-deflection or
load-end-shortening curves of simply supported shear deformable composite laminated plates with piezo-
electric actuators subjected to uniaxial compression combined with thermal and electric loads. From
Appendix B, the buckling load of a perfect plate can readily be obtained numerically, by setting 4 = 0 (or
W'/t = 0), while taking W,, = 0 (or W/t = 0). In such a case, the minimum buckling load is determined by
applying Eq. (28) for various values of the buckling mode (m, r), which determine the number of half-waves
in the X- and Y-directions.
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4. Numerical results and comments

To study the thermo-piezoelectric effects on the postbuckling behavior of shear deformable laminated
plates, several numerical examples were solved for perfect and imperfect, symmetric cross-ply and anti-
symmetric angle-ply laminated plates. Graphite/epoxy composite material and PZT-5A were selected for
the substrate orthotropic layers and piezoelectric layers, respectively. The material properties for graphite/
epoxy orthotropic layers of the substrate were (Oh et al., 2000): E;; = 1.5 x 10° MN/m?, E», = 9.0 x 103
MN/mz, G12 = G13 =7.1x 103 MN/mz, G23 =25x 103 MN/mz, Vi = 03, oy = 1.1 x 1076(0C)71, Oy =
25.2 x 107%(°C)~! and for PZT-5A piezoelectric layers E|; = E» = 6.3 x 10* MN/m?, Gj» = G13 = Gp3 =
2.42 x 10* MN/m?, vi» = 0.3, o1 = oz = 0.9 x 107¢(°C)~! and d3; = ds» = 2.54 x 1071 m/V. However, the
analysis is equally applicable to other types of composite materials as well. For these examples (except for
Figs. 1 and 2), the total thickness of the plate = 1.2 mm whereas the thickness of piezoelectric layers is 0.1
mm, and all other orthotropic layers are of equal thickness.

As part of the validation of the present method, the postbuckling load-deflection curves for a perfect
(04)r laminated square plate (b/t = 20) subjected to uniaxial compression alone and under movable in-
plane boundary conditions are compared in Fig. 1 with finite element method results of Sundaresan et al.
(1996), using their material properties, i.e. Ey/Exn =25, Gip/Exn = Gi3/E»n = 0.5, Gy3/Eyp = 0.2, and
vi2 = 0.25. Moreover, the postbuckling load-deflection curves for perfect (+30,); laminated square plates
subjected to uniaxial compression alone and under immovable in-plane boundary conditions are compared
in Fig. 2 with spline finite strip method results of Wang and Dawe (1999), using their material properties,
i.e. Ey1/Ey» =40, Gi5/Eyn = Gi3/Exn = 0.5, Gy /Ey» = 0.6, and v, = 0.25. These two comparisons show
that the results from the method presented agree well with the comparator solutions.

2.0
(=
B=1.0,(m,n)=(1,1)
15L b/t =20
b
}
1.04
movable edges
05r Present
A Sundaresan et al (1996)
OO " 1 " 1 " 1 " 1 "
0.0 0.2 0.4 0.6 0.8 1.0

Wit

Fig. 1. Comparisons of postbuckling load-deflection curves for a (04); laminated square plate under uniaxial compression.
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_M,

Immovable edges

Present
Wang & Dawe (1999)

04 06 08 10
Wit

Fig. 2. Comparisons of postbuckling load-deflection curves for (+30,); laminated square plates under uniaxial compression.

(@) (b)
14 14
(P/(0/90),), AT =0°C (0/P190/0/90), I AT=0°C
121 B=1.0,b/1=40 I 200°C 12F B=1.0,b1=40 oc
(m. my=(1. 1) fl-ar=200 ¢ (m, my=(1, 1) II: 7= 200 L
10 1ot =
S .
Q‘x
6
4 % PR
L P -_— P
R e — Wi=00 e =
2 Wi=0. 2 # Wh=00
Kl e WH= s, .
Yo . r ----Wh=01
o . . , . 0 b L . . .
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 038 10
W (mm) W (mm)

1: V=V, =-100V

2V,V, =0V

3 V,=V, =+100V

1: V=V, =-100 V

2 V=V
3 V=V

=0V

L

L

=+100V

Fig. 3. Thermo-piezoelectric effects on the postbuckling load-deflection curves of laminated square plates: (a) (P/(0/90),)s;

(b) (0/P/90/0/90)s.

A parametric study has been carried out and typical results are shown in Figs. 3-8. It should be ap-
preciated that in all figures W /¢ denotes the dimensionless maximum initial geometric imperfection of the

plate.
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20
(P/(0/90),) I: b/t = 40
B =10, (m, m)=(1, 1) I: b/t =20
s 15 AT=200°C n&123
S =
N
I
L 10F S 1&1
- 1&2 e
L 1&3 j%
I, -
5tk ’ __;»,;a""—— —
= — —— Wn=00
’ T W
PR ---=-W/h=0.1
S =
oL : ' ' '
0.0 02 04 0.6 0.8 1.0
W (mm)

1: V=V, =-100 V
2: V=V, =0V
3: V=V, =+100 V

Fig. 4. Effect of plate thickness ratio 5/¢ on the postbuckling of (P/(0/90),)s laminated square under complex loadings.

Fig. 3 gives the postbuckling load-deflection curves for a (0/90),q symmetric cross-ply laminated square
plates with symmetrically fully covered or embedded piezoelectric layers, referred to as (P/(0/90),)s and
(0/P/90/0/90), subjected to uniaxial compression and under immovable in-plane boundary conditions.
Two thermal environmental conditions, referred to as I and II, are considered. For case I, AT = 0°C and
for case II, AT = 200°C. The control voltage with the same sign is also applied to both upper and lower
piezoelectric layer, referred to as 74, and V1. Three electric loading cases are considered. Here 1y, =1L, =0V
means the buckling under a grounding condition. It can be seen that the minus control voltages V =
11 = —100 V make the plate contract so that the buckling load is increased and the postbuckled deflection
is decreased at the same temperature rise. In contrast, the plus control voltages /i, = /L = +100 V decrease
the buckling load and induce more large postbuckled deflections. It can also be seen that both buckling load
and postbuckling strength are decreased with increase in temperature. Numerical results for some points on
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Fig. 5. Effect of plate aspect ratio on the postbuckling of (P/(0/90),)s laminated plates under environmental conditions.
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Fig. 6. Comparisons of postbuckling load-deflection curves of (P/(0/90),)s and (P/(£45),/P); laminated square plates under complex
loadings.

the postbuckling curves for perfect (P/(0/90),)s and (0/P/90/0/90)y laminated square plates under
complex loading conditions are presented in Tables 1 and 2 to enable easy comparisons by others in the
future.

Fig. 4 gives the postbuckling load-deflection curves for (P/(0/90),)s laminated square plates with dif-
ferent width-to-thickness ratio b/t (=40 and 20) under environmental condition II and three electric
loading cases. It can be found that the control voltage has a small effect on the postbuckling behavior of the
plate with lower width-to-thickness ratio b/t = 20.
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Fig. 7. Comparisons of postbuckling load-deflection curves for a (P/(0/90),)s laminated square plate under two cases of in-plane
boundary conditions.
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Fig. 8. Comparisons of postbuckling load-end-shortening curves for a (P/(0/90),)s laminated square plate under two cases of in-plane
boundary conditions: (a) immovable edges; (b) movable edges.

Table 1

Comparisons of postbuckling loads P.(KN) for perfect (P/(0/90),)s piezolaminated square plates (b/t = 40) under uniform tempera-
ture rise and three sets of electric loading conditions

W (mm) AT =0°C AT = 200°C
VU:VL:7100V VU:V]_:OV VU:V]_:+100V VU:VL:7100V VU:VLIOV VU:VL:+100V

0 6.4100 6.2205 6.0310 4.3471 4.1576 3.9681
0.06 6.4261 6.2366 6.0471 4.3631 4.1736 3.9841
0.12 6.4744 6.2849 6.0954 44114 4.2219 4.0324
0.24 6.6677 6.4782 6.2887 4.6047 4.4152 4.2257
0.36 6.9905 6.8010 6.6115 4.9275 4.7380 4.5485
0.48 7.4440 7.2545 7.0650 5.3810 5.1915 5.0020
0.6 8.0297 7.8402 7.6507 5.9667 5.7772 5.5877
0.72 8.7495 8.5600 8.3705 6.6865 6.4970 6.3076
0.84 9.6059 9.4164 9.2269 7.5429 7.3534 7.1640
0.96 10.6016 10.4121 10.2226 8.5386 8.3492 8.1599
1.08 11.7400 11.5505 11.3610 9.6770 9.4876 9.2984

Fig. 5 shows the effect of plate aspect ratio f (=1.0 and 1.5) on the postbuckling behavior of
(P/(0/90),)g laminated plates under environmental condition II and three electric loading cases. As ex-
pected, these results show that the buckling load and postbuckling strength are increased by decreasing
plate aspect ratio 8, with W/t < 0.8. It can also be found that the effect of control voltage is more pro-
nounced for the rectangular plate than for the square plate.

Fig. 6 compares the postbuckling load-deflection curves of (0/90),y symmetric cross-ply and (£454);
antisymmetric angle-ply laminated square plates with symmetrically fully covered piezoelectric layers under
environmental condition II and three electric loading cases. It can be seen that the buckling load of the
(P/(0/90),)s plate is lower than that of the (P/(+45),/P) plate, but the postbuckling load is higher when
the deflection W is sufficiently large. It can also be found that the control voltage has a small effect on the
postbuckling behavior of the (P/(+45),/P), plate.
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Table 2
Comparisons of postbuckling loads P, (KN) for perfect (0/P/90/0/90) piezolaminated square plates (b/t = 40) under uniform
temperature rise and three sets of electric loading conditions

W (mm) AT = 0°C AT = 200°C
Vo=W =—100V Vy=W=0V Vy=W=+100V V=K=—100V W=WK=0V FV=WK=+l00V

0 6.0434 5.8539 5.6644 3.9804 3.7909 3.6014
0.06 6.0594 5.8699 5.6804 3.9964 3.8069 3.6174
0.12 6.1077 5.9182 5.7287 4.0447 3.8552 3.6657
0.24 6.3010 6.1115 5.9220 4.2380 4.0485 3.8590
0.36 6.6238 6.4343 6.2448 4.5608 4.3713 4.1818
0.48 7.0774 6.8879 6.6984 5.0143 4.8248 4.6352
0.6 7.6632 74737 7.2842 5.5999 5.4104 5.2208
0.72 8.3833 8.1938 8.0043 6.3196 6.1301 5.9405
0.84 9.2402 9.0507 8.8612 7.1757 6.9862 6.7965
0.96 10.2366 10.0471 9.8576 8.1711 7.9816 7.7918
1.08 11.3760 11.1864 10.9969 9.3090 9.1195 8.9294

Figs. 7 and 8 compare, respectively, the postbuckling load-deflection and load-end-shortening curves of
a (P/(0/90),)s plate under two cases of the in-plane boundary conditions and under environmental con-
dition II and three electric loading cases. It can be seen that the control voltage has no effect on the
postbuckling load-deflection curves, but still has a significant effect on the postbuckling load-end-short-
ening curves of the plate under movable in-plane boundary condition. In contrast, the control voltages
affect both load-deflection and load-end-shortening curves of the plate under immovable in-plane boundary
condition.

The postbuckling load-deflection or load-end-shortening curves for imperfect shear deformable lami-
nated plates have been plotted, along with the perfect plate results, in Figs. 3-8. In Figs. 3-6 the in-plane
boundary condition is considered to be case (2), i.e. unloaded edges are immovable. In Figs. 3 and 5-8, the
plate width-to-thickness ratio b/t = 40.

5. Concluding remarks

A postbuckling analysis has been presented for simply supported, shear deformable laminated plates
with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads.
The temperature field considered is assumed to be a uniform distribution over the plate surface and through
the plate thickness and the electric field is assumed to be the transverse component £, only. The material
properties are assumed to be independent of the temperature and the electric field. A perturbation tech-
nique is employed to determine the buckling loads and postbuckling equilibrium paths. The solutions
presented give an insight into interaction between the mechanical, thermal and electric fields. Extensive
parametric studies for symmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered
or embedded piezoelectric actuators subjected to complex loadings have been carried out. The results
presented herein show that the minus control voltages increase the buckling load and decrease the post-
buckled deflection at the same temperature rise, whereas the plus control voltages decrease the buckling
load and induce more large postbuckled deflections for the plate with immovable unloaded edges. In
contrast, for the plate with movable edges, the control voltage has no effect on the postbuckling load-
deflection curves, but still has a significant effect on the postbuckling load-end-shortening curves of the
plate. The results also confirm that the characteristics of postbuckling are significantly influenced by
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temperature rise, the character of in-plane boundary conditions, transverse shear deformation, plate aspect
ratio, fiber orientation and stacking sequence as well as initial geometric imperfections.
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Appendix A

In Egs. (1)-(4)
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In the above equations [4;], [B}], [D;], [E;], [F;] and [H}] (i,j = 1,2,6) are reduced stiffness matrices,
defined as
A“'=A", B=-A'B, D=D-BA'B, EE=—-A"'E, FF=F - EA'B,
H =H-EA'E (A.2)
where 4;;, B;; etc., are the plate stiffnesses, defined by

(AIJ7BU’D!]7EU7F;]7H Z/ 1 Z 22 Z3 Z4 Zé)dZ (17]: 17276) (A3a)

(4;j, Dy, Fy) Z / (1,Z2,729dz (i) =4,5) (A.3b)
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In Egs. (28) and (29)
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So=01/(1+u) - S(I)Dv S2 = Y1472 O2(1 +20) /16, Sy = V%47§4C11(C24 — C4q)/256,

)t 2

m* g
O11 = gos +V14V24mznzﬁzw’ 2= ( * : * C22>

&o6 77 76
813581 831583
O =g+ y14y249m2n2,82 —1;513:7 , O3 =gy + V14“/249m2n2[32 43;31:7
4m? 4n?p?
2 2 2
Y6 = 1+ V147247230 Y+ “/32247’112 sy V7=V + V147247223 - y3224n2ﬁ2

m*  ntp )
)

Cos =21+ p)*(1+2 2@( +
24 ( ,U)( ,U) 2 T Tome

2 m® ”Sﬁg
Cu= (1 )1+ 200201+ 0+ (1420 7+ 7L )
Ji3ys - a1

Ji3 =001+ p) —01Ci3 +J°, Jy = 05Cii(1 4 p) — 01,C3 —J”
in the above equations, for the case of four edges movable
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and for the case of unloaded edges immovable
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